Parallel Sysplex: Case Studies

OS/390 and Storage Systems Technical Conference
Como, May 2000

Paul Arnerich
Tsd (UK) Ltd/Laird Ståhl Ltd
Paul_TSD@compuserve.com or Paul@tsdd.co.uk
Agenda

- Sysplex Review
 - Basic
 - Parallel
 - Application Issues
- Business Issues
 - Benefits
 - Justification
 - PSLC
- Case Study 1
- Case Study 2
- Where To From Here
Sysplex Review
Basic Sysplex

Communications
- XCF - OS/390 base software to provide high speed communication protocol between MVS’s
- Simple API available to any authorised assembler program
- Provides Messaging services
- Provides Status Monitoring services
- Needs a physical transport a CTC

Sharing
- GRS must propagate system locks to participating MVS’s
- GRS can propagate dataset enqueues to participating MVS’s
- Can share DASD resources with integrity
- Must share selected systems datasets
Basic Sysplex ...cont

- **Time Base**
 - “Time is an illusion, lunchtime doubly so”
 - Ford Prefect (Hitchhikers Guide to the Galaxy)
 - Must have a common time reference
 - used for logging for recovery purposes
 - used as a measure of health

- **Limitations**
 - No more than 32 MVS’s in a single configuration
 - GRS propagation can cause significant performance overhead
 - Tuning of GRS required if more than 4 MVS's
 - Consider GRS STAR configuration if over 4 MVS's
Basic Sysplex
Basic Sysplex - Pre-reqs

- 2 or more processors
- 2 or more shared DASD volumes → times two
- Sysplex Timers → times two
- CTC’s providing any to any connectivity → times two
- Appropriate OS/390 Software levels
- Applications to exploit the architecture
Parallel Sysplex

- Adds to Basic Sysplex through provision of shared memory
- S3 - Shared Standalone Storage
- Allows true data sharing between MVS's as if it was processor memory
- Delivered via the Coupling Facility:
 - A Stand Alone Coupling Facility, or
 - Internal Coupling Facility
 - an engine on a CMOS processor
- XES - Base OS/390 software
 - provides all communication with Coupling Facility
 - Simple API available to authorised assembler program
Parallel Sysplex

MVS1
GRS
XCF
XES

MVS2
GRS
XCF
XES

MVS3
GRS
XCF
XES

DASD
Parallel Sysplex - Pre-reqs

- Basic Sysplex
- Coupling Facility
 - times two
 - sufficient storage and Mips to do the job
 - Scalable
- Coupling Links
 - times two
 - Currently 100 Mps, 250 Mps or 1000 Mps
 - need sufficient bandwidth
- Appropriate OS/390 Software levels
- Applications to exploit the architecture
Supported Applications

- **XCF**
 - MCS
 - GRS
 - RTM
 - APPC
 - JES2
 - JES3
 - DAE
 - VLF
 - SMS (PDSEs)
 - TSO/E
 - OPC (Tivoli)
 - WLM
 - CI CS & CTS
 - etc

- **XES**
 - RACF
 - JES2
 - JES3
 - GRS
 - DB2
 - IMS
 - DFP (Tapes)
 - CTS
 - VSAM
 - VTAM
 - etc
Warning

- Application design is critical
- Choice of Application Enablers is critical
- Which CF holds which structures?
- Co-location of CF with Application Enabler is essential to obtain best access speeds

- Ensure Coupling Link bandwidth is sufficient
- H/W design requires duplicity of critical components

- Investment in operational infrastructure is essential
Business Issues
Business - Benefits

Parallel Sysplex benefits when fully implemented

→ Rapid response to unexpected growth
 • Quickly add power to match requirements without disrupting business

→ S/390 Resource Sharing
 • Value today in a single CEC and multiple CEC environments

→ Balance multiple workloads
 • Let all applications share system resources in order to meet business goals you define

→ Increased productivity
 • Manage multiple systems as single system from single point of control

→ Continuous application availability
 • Leading-edge application availability

→ Investment protection
 • Build on current investments in hardware, software, applications and skills, all at a reduced cost of computing
Business Justification (1)

- Need a reason to implement
- Requires acquisition of hardware
- Requires investment in operational infrastructure
- Requires investment in application design

- So why do it?
Business Justification (2)

Two compelling reasons for Parallel Sysplex

1) Save money (Expediency)
 → Parallel Sysplex Licence Charging (PSLC)
 → SHAMPlex
 → S/ W TCO reduction
 ● Probably needs aggressive Asset Management

2) Availability
 → 99.999% availability is possible
 → Evaluate availability requirements
 → Does loss of service means loss of revenue?
PSLC requirements

- PSLC allows customers to qualify for significant reduction in OS/390 licence charges

- To qualify the customer must have:
 - Functional Parallel Sysplex
 - 50% of ‘production workload in said Plex
 - 50% of Mippage in said Plex
 - Plex must be exploiting the Coupling Facility
 - Valid exploiters range from full DB2 data sharing to the sharing of a single Tape Drive
Availability Definitions

- **High Availability**
 - Provide access to applications during planned outages
 - Achieved through use of redundant components and thorough testing

- **Continuous Operation**
 - Provide ‘service’ at all times - no outages
 - No change activity is possible

- **Continuous Availability**
 - Blend of the two
 - Continuous access to applications, no outages
Case Study 1
Case Study 1 - Background

- Insurance and Financial sector
- Historical configuration of two processors due to acquisition
- Not a shared or integrated workload
- Needed Mippage for Y2K development
- Lip service only to high availability
- Software costs growing rapidly
- Feasibility study to verify costs of Parallel Sysplex implementation versus PSLC savings
- SHAMPIlex an obvious choice
Case Study 1 - Business Case

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS S/W costs p.a (IBM only)</td>
<td>600 groats *</td>
</tr>
<tr>
<td>H/W (CF, Clinks, CTC’s, Dasd)</td>
<td>200</td>
</tr>
<tr>
<td>Internal Resources</td>
<td>35</td>
</tr>
<tr>
<td>External Resources</td>
<td>7</td>
</tr>
<tr>
<td>P.U.</td>
<td>8</td>
</tr>
</tbody>
</table>

| Year 1 PSLC Savings | 50 |
| Future Year PSLC Savings | 250 |

* NB: not real currency values, but in proportion
Case Study 1 - Implementation

- Acquired small CMOS processor, two second hand
 Timers, CTC’s
- Already at appropriate OS/390 level
- Parallel Sysplex covered:
 - 2 Production images
 - 1 Coupling Facility
 - 2 Development images
 - 3 Y2K development images (not time sensitive)
- Included Y2K and Development MVS’s to qualify
 on 50% rules
- Sharing most Cartridge Drives
- Minimal operational changes by design
Case Study 1 - Summary

No Sysplex side benefits:
- Console consolidation
- Shared Spool
- Data sharing
- ISV Software savings
- etc

Just overheads:
- Increased operational complexity
- Slight performance overhead of XES, XCF, GRS
- Technical Staff frustration
Case Study 2
Case Study 2 - Background

- Large European Airline
- Large Mippage required for DB2 based reservation system
- Size due to growth
- Aging (creaking) Bipolar processors, not owed anything
- Replacement CMOS processors could satisfy most of the Mippage
- Availability crucial from business perspective
- Application design modern
- Full DB2 data sharing Parallel Sysplex an obvious choice
Case Study 2 - Business Case

- Simple!

- Loss of reservation system meant loss of income immediately

- Long term loss of reservation system meant loss of organisations viability after ‘n’ hours!

- Processors due to be replaced imminently
Case Study 2 - Implementation (1)

- Acquired three CMOS processor
 - Sufficient Storage for large DB2 Caches
 - Engines specifically for Internal CF usage
 - Highly available hardware
- Acquired High Bandwidth CLinks, CTC's and Timers
- Already at appropriate OS/390 level
- Parallel Sysplex covered:
 - 3 Production images
 - 3 Coupling Facilities
Case Study 2 - Implementation (2)

- Single system image of the processing capacity
 - JES MAS
 - Sysplex operational console approach
 - Shared RACF
 - Fully shared DASD
 - etc

- Migrated existing DB2 Applications to new platform

- Other applications followed

- Location of CF’s to DB2’s is critical from performance perspective

- Care taken to minimise Inter System Read/Write Interest
Case Study 2 - Summary

- Implementation costs balanced against delivery of highly available system
- Significant Operational benefits
- Performance costs insignificant - due to design
- Will acquire higher bandwidth CLinks as they become available
- Achieving significant reduction in ISV software costs by licensing only for capacity required
Where To From Here?
Operational Infrastructure (1)

- **Capacity management**
 - Monitor CF and CLink usage
 - Understand growth requirements and consumptive spikes.

- **Change management.**
 - Some Sysplex changes are introduced across all images
 - Understand when this is required and avoid where possible
 - Dynamic Reconfiguration should be used in every case.

- **Problem management.**
 - Some problems on one MVS can affect the viability of all MVS’s, from a Sysplex health perspective
 - Ensure CF dumps are trapped, and saved
Operational Infrastructure (2)

- **Availability management**
 - Ensure configuration allows for n+1 redundancy in all component parts
 - Ensure (through trial/drift) that the important MVS’s can sustain loss of Sysplex components

- **Audit and controls**
 - Naming conventions used for ‘things’ in the Sysplex must be documented and understood

- **Operations Management**
 - Many Sysplex failures are self correcting
 - They do produce ‘frightening’ messages
 - Operational Drills are essential
Summary

- Continue with TCO reductions
- Geographically Dispersed Parallel Sysplex
 → Use PPRC to mirror DASD across sites
 → Cross Locate CF’s
 → Watch distances, performance implications
- Requires highly available applications
- Requires investment
- Practice failure
- 99.999 is a reality if desirable
- Is 99.999 really desirable?
Questions

???